Next Generation Therapeutics for Prostate Cancer
(NASDAQ: EPIX; TSX: EPI)
Rodman & Renshaw 19th Annual Global Investment Conference
Forward Looking Statement

This presentation may contain forward-looking statements. Forward-looking statements and information are subject to various known and unknown risks and uncertainties, many of which are beyond the ability of ESSA to control or predict, and which may cause ESSA’s actual results, performance or achievements to be materially different from those expressed or implied thereby. Such statements reflect ESSA’s current views with respect to future events, are subject to risks and uncertainties and are necessarily based upon a number of estimates and assumptions that, while considered reasonable by ESSA as of the date of such statements, are inherently subject to significant medical, scientific, business, economic, competitive, political and social uncertainties and contingencies. In making forward-looking statements, ESSA may make various material assumptions, including but not limited to the market and demand for the securities of ESSA, general business, market and economic conditions, obtaining positive results of clinical trials, and obtaining regulatory approvals.

Forward-looking information is developed based on assumptions about such risks, uncertainties and other factors set out herein and in ESSA’s prospectus dated December 14, 2016 under the heading “Risk Factors”, a copy of which is available on ESSA’s profile at the SEDAR website at www.sedar.com, and as otherwise disclosed from time to time on ESSA’s SEDAR profile. Forward-looking statements are made based on management's beliefs, estimates and opinions on the date that statements are made and ESSA undertakes no obligation to update forward-looking statements if these beliefs, estimates and opinions or other circumstances should change, except as may be required by applicable Canadian securities laws. Readers are cautioned against attributing undue certainty to forward-looking statements.
The ESSA Mission

Address a major unmet medical need in the therapy of prostate cancer through novel mechanisms of inhibiting of androgen driven biology.
Investment Highlights

• Through EPI-506, the clinical safety and benefit established for inhibition of the N-terminal domain of the androgen receptor in mCRPC patients
• Promising next-generation Aniten compounds are designed to improve potency and other pharmaceutical properties compared to EPI-506
 • Rapidly advancing toward the clinic for mCRPC
• mCRPC represents a significant market opportunity – 160,000 new cases of prostate cancer annually
• Company to implemented a corporate restructuring plan to focus its resources on rapidly advancing the lead Aniten compound into the clinic
 • Annual cash savings of approximately $7M
• Highly experienced management team with significant oncology experience
Management Team and Board of Directors

Management

David R. Parkinson, MD
- President & Chief Executive Officer, Director
- Nodality, Novartis, Amgen, Biogen Idec, National Cancer Institute

Peter Virsik, MS, MBA
- Executive Vice President and Chief Operating Officer
- XenoPort, Gilead Sciences, J.P. Morgan, Genentech

Frank Perabo, MD, PhD, FEBU
- Chief Medical Officer & Executive Vice President of Clinical Development
- Astellas Global, Oncology World GmbH, P & S Partner Consulting, Bonn University

David S. Wood, MBA, CPA, CMA
- Chief Financial Officer
- Celator Pharmaceuticals, Cubist Pharmaceuticals, TerraGen Discovery

Board of Directors

Richard Glickman, LLD (Chairman)
- Chairman of the Board, Aurinia, Aspreva, StressGen

David R. Parkinson, MD

Marianne Sadar, PhD
- BC Cancer Agency, UBC, ESSA Co-Founder

Raymond Anderson, PhD
- UBC, ESSA Co-Founder, Aquinox, Inflazyme

Gary Sollis, LLD
- Dentons

Franklin Berger, CFA
- JP Morgan, Salomon Smith Barney, Five Prime

Scott Requadt, JD, MBA
- Clarus Ventures, TransForm Pharma, Davis Polk
Prostate Cancer: Unmet Medical Need

• Prostate cancer is 2nd most common cause of death in men \(^1\)
 o Yearly, there are ~160,000 new prostate cancer cases and ~26,000 US deaths due to the disease
• In 2015, Zytiga® (abiraterone, approved 2011) and Xtandi® (enzalutamide, approved 2012) generated global sales of over $4B
• Disease progression strongly driven by androgen receptor (AR) signaling \(^2,3,4\)
 o An estimated ~60% of mCRPC tumors post-Xandi or Zytiga failure may still be AR-driven \(^5\)
• Despite new therapies, development of resistance limits treatment options and survival \(^6,7\)

\(^1\) Surveillance Research, American Cancer Society, 2016
\(^5\) Wyatt, JAMA, 2016
\(^7\) Attard, G, et al. ASCO Annual Meeting, 2017
Evolution of Prostate Cancer Therapeutics: Improvements with Higher Anti-AR Potencies and Earlier Combination Therapy

• Enzalutamide (ENZ) is a LBD inhibitor similar in pharmaceutical class to bicalutamide (BIC) but with higher affinity and in vivo potency

• ENZ vs. BIC clinical studies indicate more robust and thorough AR inhibition can lead to improvements in PFS in early CRPC:
 o TERRAIN (M1): PFS advantage of 9.9 months for ENZ compared to BIC
 o STRIVE (M0, M1): PFS advantage of 13.7 months for ENZ compared to BIC

• Limited clinical response to enzalutamide after progression on abiraterone (ABI)
 o PLATO clinical trial (abiraterone + ADT): Attard et al: J Clin Oncol 2017.35.15_suppl.5004
 o Astellas ENZ post ABI study: de Bono JS et al: Eur Urol 2017.07.035

• Major clinical benefit of early combination anti-hormonal therapy in castration-sensitive prostate cancer
 • LATITUDE trial; Fizazi K et al: NEJM 2017 377: 352
Prostate Cancer: Role of the Androgen Receptor

Androgen

Cytoplasm

Nucleus

Gene transcription

Cell proliferation

ARE = Androgen responsive elements
Current Therapies Target the AR Ligand Binding Domain

- AR is comprised of 3 distinct, independently acting domains
- Current therapies target the ligand-binding domain (LBD) of the AR

Zytiga® (abiraterone acetate)
Eligard™, Lupron® (leuprolide)
Zoladex® (goserelin)
Firmagon® (degarelix)

Xtandi® (enzalutamide)
Casodex® (bicalutamide)
Eulexin® (flutamide)
Nilandron® (nilutamide)

N-terminal domain DNA-binding domain Ligand-binding domain
Mechanisms of AR Resistance Occur in the Ligand Binding Domain

AR Amplification

Gain-of-function mutations

Splice variants

Promiscuous activation (i.e., glucocorticoids, progesterone)

Androgen Receptor

N-terminal domain (NTD) DNA-binding domain Ligand-binding domain (LBD)

“Anitens”: Novel Mechanisms of AR Inhibition with EPI Compounds

• Medical Need:
 o AR pathway active and relevant even after failure of current anti-androgens
 o Alternative mechanisms of AR pathway inhibition are required to address mechanisms of resistance
 o Successful development of new agents may lead to both salvage therapy strategies but also combination therapy strategies in earlier stage patients for better outcomes

• Anitens:
 o Initial compound result of natural product discovery
 o Granted unique USAN drug stem of “Aniten” as an N-terminal inhibitor of AR
 o AR inhibition through a completely novel mechanism: N-terminal domain inhibition
 o First generation EPI-506 has completed Phase I study
 o More potent next generation compounds being prepared for clinical development
Targeting the AR NTD: Novel Transcription Factor Inhibition of Androgen-driven Prostate Cancer Biology

- Proposed binding of EPI compounds to Tau-5 region of AF1
- EPI compounds inhibit wild-type, LBD mutant, and splice-variant AR activity
- EPI compounds inhibits AR transcriptional activity by blocking interaction with key transcriptional proteins (RAP74 & CBP)

Preclinical EPI-506/002 Activity in AR Splice Variant Driven Tumors

- LNCaP95 has a high level of expression of AR-V7 splice variant and is enzalutamide (ENZ) resistant
- EPI is active in inhibiting cellular proliferation while ENZ is not active
- EPI effectively reduces AR splice-variant driven tumor growth compared to ENZ and control

Adapted from Fig. 5A in Yang YC, et al. Clin Cancer Res, 2016
First-Generation EPI-506 Phase 1/2 study in Patients w/ mCRPC

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design</td>
<td>An adaptive Phase 1/2 first-in-man dose escalation/dose expansion study</td>
</tr>
<tr>
<td>Dose</td>
<td>Oral once-daily as a soft-gel capsule</td>
</tr>
<tr>
<td>Population</td>
<td>mCRPC patients who have experienced disease progression after abiraterone, enzalutamide, or both; allowed to have also failed one regimen of docetaxel chemotherapy</td>
</tr>
</tbody>
</table>
| **Study Size** | Phase 1: ~36 patients
 Phase 2: planned 120 patients |
| **Endpoints** | Phase 1: safety, PK, maximum tolerated dose, recommended Phase 2 dose, biomarkers (CTCs) |
| | Phase 2: PSA response parameters, radiographic response, pain, biomarkers (CTCs, cfDNA) |
| **Study Status**| Phase 1 study ongoing at 5 sites in US and Canada
 Anticipated 27+/- clinical sites in US, Canada, and EU for Phase 2 |
First-Generation EPI-506 Phase 1 Pharmacokinetic Data

Mean Steady-State EPI-002 Plasma Pharmacokinetics

<table>
<thead>
<tr>
<th>EPI-002 Pharmacokinetics (Mean ± S.D.) on Day 8</th>
<th>PK Parameter</th>
<th>Cohort 6 2,400 mg QD (n=3)</th>
<th>Cohort 7 1,800 mg BID (n=2)</th>
<th>Cohort 8 3,600 mg QD (n=2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C<sub>max</sub> (ng/mL)</td>
<td>2,372 ± 813</td>
<td>3,057 ± 159</td>
<td>8,397 ± 1396</td>
<td></td>
</tr>
<tr>
<td>**t<sub>max</sub> (hr)</td>
<td>4.00 (2.00 - 4.00)</td>
<td>2.00 (2.00 - 2.00)</td>
<td>2.50 (1.00 - 4.00)</td>
<td></td>
</tr>
<tr>
<td>C<sub>last</sub> (ng/mL)</td>
<td>70 ± 25</td>
<td>208 ± 85</td>
<td>195 ± 185</td>
<td></td>
</tr>
<tr>
<td>**AUC<sub>0-24h</sub> (ng*h/mL)</td>
<td>13,829 ± 6,758</td>
<td>23,524 ± 5,380</td>
<td>42,988 ± 24,841</td>
<td></td>
</tr>
</tbody>
</table>

**t_{max} reported as median (min – max)
First-Generation EPI-506 Phase 1 Interim Exposure and Treatment Duration Data (N=28)

Data as of Aug 28, 2017

Median # exposure days = 87

- Continuing on study drug
- Discontinued
- Time of best PSA decline

Doses Received (mg)
- 160, 320, 640, 1280, 2400
- 640, 1280
- 2400
- 80, 160
- 2400
- 320
- 640, 1280
- 640
- 2400
- 320
- 1280
- 1280
- 80
- 1280
- 80
- 1800 (BID)
- 160
- 160
- 3600
- 1800 (BID)
- 320
- 640
- 3600
- 640
- 1800 (BID)
- 3600
- 1800 (BID)
Safety / Tolerability Profile

<table>
<thead>
<tr>
<th>Most Commonly Reported Adverse Events > 10%</th>
<th>All Grades, N (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diarrhea, nausea</td>
<td>13 (46%)</td>
</tr>
<tr>
<td>Fatigue</td>
<td>7 (25%)</td>
</tr>
<tr>
<td>Decreased appetite, pain in extremity</td>
<td>6 (21%), each</td>
</tr>
<tr>
<td>Vomiting</td>
<td>5 (18%)</td>
</tr>
<tr>
<td>Back pain</td>
<td>4 (14%)</td>
</tr>
<tr>
<td>Abdominal distension, anemia, arthralgia, musculoskeletal pain, UTI</td>
<td>3 (11%), each</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Adverse Events ≥ Grade 3</th>
<th>N (%)</th>
<th>Relationship to study drug</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anemia</td>
<td>3 (11%)</td>
<td>Not related</td>
</tr>
<tr>
<td>AST elevated</td>
<td>2 (7%)</td>
<td>Probably related, Possibly related</td>
</tr>
<tr>
<td>Neutropenia</td>
<td>2 (7%)</td>
<td>Not related</td>
</tr>
<tr>
<td>Abdominal pain, diarrhea</td>
<td>1 (4%), each</td>
<td>Possibly related</td>
</tr>
<tr>
<td>ALT elevated, amylase elevated, angina, hypertension, dizziness postural</td>
<td>1 (4%), each</td>
<td>Probably related</td>
</tr>
<tr>
<td>Arthralgia, gastrointestinal hemorrhage, pain in extremity, syncope, thrombocytopenia, urinary retention</td>
<td>1 (4%), each</td>
<td>Not related</td>
</tr>
</tbody>
</table>
First-Generation EPI-506 Interim PSA Response - Maximal PSA Change at Any Time from Start of Multi-dose Period (N=25*)

*Of 28 enrolled pts: 25 were evaluable (had at least a WK4 PSA reading), 1 has not reached WK4, 2 discontinued before reaching WK4

Data as of Aug 28, 2017
EPI-506/002: Preclinical and Clinical Summary

• **Preclinical proof-of-concept established:**
 o Inhibition of AR transcription in vitro and in vivo
 o Dose-dependent tumor growth inhibition
 o More profound AR inhibition by combining NTD inhibitors with LBD inhibitors

• **Clinical data from the Phase 1 trial indicates:**
 o Modest efficacy in refractory mCRPC patients with minor PSA declines and some evidence of stable disease in this difficult-to-treat population
 o Favorable safety profile: mostly mild-moderate adverse events
 o Significant pharmaceutical limitations to EPI-506:
 » Potency, bioavailability, formulation, stability
Improving Upon the Limitations of EPI-002: Next-Generation Aniten Target Product Profile

Next-Generation Aniten Goals

• Increase *in vitro* and *in vivo* potency (≤1 μM IC$_{50}$ potency)
 o Verify oral activity *in vivo*

• Clean off-target profile

• Improved ADME profile
 o Block anticipated metabolism/resistance
 o Short, efficient, and scalable synthesis
 o Drug substance/product stability

• Strong IP – novel composition of matter
Several years of SAR effort led to the next-generation compounds

Screening data indicate these compounds are considerably more potent than EPI-002

Next-generation compounds also being targeted to provide improved ADME profile vs. EPI-506/002

- Potential for improved formulation, absorption, stability

Additional improvements in pharmaceutical properties:

- Crystal formation suggests solid form possibility, unlike EPI-506/002 which is difficult to formulation
 - Increases the likelihood of developing fixed-dose formulations in the future with other agents

Further preclinical characterization underway

Strong IP protection covering all Aniten filed broadly
Next-Generation Aniten Program Status

<table>
<thead>
<tr>
<th>TPP Criteria</th>
<th>Status</th>
<th>Specifics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increase potency</td>
<td>✓</td>
<td>In vitro potency goal achieved; potency similar to ENZ and considerably more potent than EPI-002</td>
</tr>
<tr>
<td>• Oral activity in vivo</td>
<td>✓</td>
<td>One compound tested in xenograft LNCaP model; orally active at lower doses than EPI-002</td>
</tr>
<tr>
<td>Clean off-target profile</td>
<td>✓</td>
<td>CEREP screening initiated; initial screening on a few compounds indicate that at least one compound has minimal off-target binding</td>
</tr>
<tr>
<td>Improved ADME profile</td>
<td>TBD</td>
<td>Screening initiated</td>
</tr>
<tr>
<td>• Block metabolism</td>
<td>TBD</td>
<td>New chemical structures designed to minimize potential metabolism</td>
</tr>
<tr>
<td>• Simple synthesis</td>
<td>✓</td>
<td>Simple 5-step process developed</td>
</tr>
<tr>
<td>• Chemical stability</td>
<td>✓</td>
<td>Initial stability appears greatly improved over EPI-506</td>
</tr>
<tr>
<td>Strong IP</td>
<td>✓</td>
<td>Worldwide IP filings made</td>
</tr>
</tbody>
</table>

- IND filing is targeted for early 2019
Emerging Potential Clinical Applications for NTD Inhibitors

• Salvage of anti-androgen refractory mCRPC patients
 o Majority were AR amplification or mutations
 o Other pathway genes affected: FOXA1, NCOR1/2, SPOP ZBTB16

• In combination with second generation anti-androgens in earlier mCRPC patients
 o In vitro data (Sadar lab, BCCA)
 o Preclinical in vivo (Mostaghel et al, unpublished)

• In combination with other agents
 o e.g. mTOR, PARP inhibitors (Sadar lab, BCCA)
More Complete AR Inhibition by Combining NTD & LBD Inhibitors in both Full Length and Splice Variant AR

In Vitro AR Inhibition with Full-Length AR*

<table>
<thead>
<tr>
<th></th>
<th>EPI-002</th>
<th>ENZ</th>
<th>EPI-002 + ENZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>LNCaP fl-AR 100%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In Vitro AR Inhibition with Resistant Cell Line*

<table>
<thead>
<tr>
<th></th>
<th>EPI-002</th>
<th>ENZ</th>
<th>EPI-002 + ENZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>LNCaP95 w/ High Ectopic AR-V7 100%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Similar effect seen in an *in vivo* VCaP xenograft model conducted independently which studied adding EPI to abiraterone or enzalutamide
- Together, these data indicate that both CYP17a lyase inhibitors and direct AR LBD antagonists may be worthwhile combinations with EPI in early and late-stage prostate cancer patients

Situation:
- Strengthening preclinical evidence for a therapeutic benefit from AR NTD inhibition
- Recognition that the agent is not a covalent binder: implications
- Phase I trial of EPI-506: safe, hints of efficacy but revealing of 506’s limitations
- Development of next generation Anitens preserves MOA but significantly improves potency, pharmaceutical properties

Choice:

Switch to EPI-002 (Active Drug):
- Reformulate
- Conduct bridging PK study
- Move to phase 2 study

-or-

Switch to Aniten:
- Select higher potency compound with improved ADME profile
- File IND and start new phase 1 study and refine patient selection
ESSA 9/2017: Focus on Next Generation NTD Inhibitors

• Decisions:
 o Board decision to focus company and resources on the development of next generation aniten compounds
 o The company will not proceed to Phase 2 trial with EPI-506
 o Today ESSA announced a company restructuring to focus on retaining staff for activities involved in Aniten compound selection and characterization for IND preparation, with goal of initiation of Phase 1 by 1Q 2019
 » Restructuring annual savings of $7M
 o The company is actively exploring the potential for advancing these compounds in collaboration or partnership
ESSA Value Proposition and Near-term Milestones

- Initial proof-on-concept established showing NTD inhibition can be done safely and provide a clinical benefit in mCRPC
- Numerous lessons learned on how to select patients and measure patient responses in a refractory mCPRC population
- Un-partnered Aniten franchise with high potency compounds rapidly advancing to IND
 - Aniten compounds exhibit similar potency of AR-inhibition as ENZ
- Numerous near-term clinical and corporate milestones:

<table>
<thead>
<tr>
<th>Milestone Event</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Designate a lead Aniten compound for IND-enabling studies</td>
<td>1H18</td>
</tr>
<tr>
<td>Advance discussions with strategic partners regarding a collaboration</td>
<td>2018</td>
</tr>
<tr>
<td>File and IND on the lead Aniten in mCRPC</td>
<td>1H2019</td>
</tr>
<tr>
<td>Description</td>
<td>Value</td>
</tr>
<tr>
<td>---</td>
<td>-----------</td>
</tr>
<tr>
<td>Cash (as reported 6/30/17)</td>
<td>$7.2M</td>
</tr>
<tr>
<td>Shares Outstanding</td>
<td>29.1M</td>
</tr>
<tr>
<td>Share price (7/08/17)</td>
<td>$0.44</td>
</tr>
<tr>
<td>Market Capitalization (7/08/17)</td>
<td>$12.5M</td>
</tr>
<tr>
<td>Ticker (NASDAQ)</td>
<td>EPIX</td>
</tr>
<tr>
<td>Ticker (TSX)</td>
<td>EPI</td>
</tr>
</tbody>
</table>
For further information, please contact:

Investor Relations

ir@essapharma.com
Back-Ups
Biological Complexity of Late Stage mCRPC

- The Phase 3 clinical trials of abiraterone and enzalutamide were conducted in a biologically different patient population
 - Patients progressing after initial ADT (e.g. Lupron and Casodex)

- Patients in the ESSA EPI-506 trial were later stage, having failed at least 1 second generation anti-androgen, and often both

- These patients are more biologically complex than previously realized (see Robinson Cell 161 1215, 2015)

- NTD inhibitors may form part, but not all of a therapeutic strategy for these advanced patients
Aberrations in AR Pathway Found in mCRPC (Robinson et al Cell 161,1215 2015)
Aberrations in the AR Pathway Found in mCRPC

- Cohort of 150 mCRPC affected individuals

- 107/150 harbored AR pathway aberrations
 - Majority were AR amplification or mutations
 - Other pathway genes affected: FOXA1, NCOR1/2, SPOP ZBTB16 (PLZF)

- Evidence for intra-tumoral heterogeneity

- Splice variants present in majority of pre-abiraterone/enzalutamide cases but at very low ratios

 - Robinson et al Cell161:1215, 2015