Preclinical development of the second-generation N-terminal domain androgen receptor inhibitor, EPI-7386, for the treatment of prostate cancer

Nan Hyung Hong, Ronan Le Moigne, C. Adriana Banuelos, Nasrin R Mawi, Teresa Tam, Jun Wang, Raymond J. Andersen, Alessandra Cesanos, Marianne D. Sadar, Han-Jie Zhou, Peter Viraik

ESSA Pharmaceuticals, Houston, TX, and South San Francisco, CA, USA,
Department of Genomic Sciences, BC Cancer Agency, 875 10th Avenue, Vancouver, BC V6Z 1L5, Canada.

Department of Chemistry, University of British Columbia, 5458 Main Mall, Vancouver, BC V6T 1Z1, Canada.

Abstract # 6909

Pre-clinical development of the second-generation N-terminal domain androgen receptor inhibitor, EPI-7386, for the treatment of mCRPC

The majority of metastatic castration-resistant prostate cancers (mCRPCs) progress on anti-androgen therapy with rising prostate-specific antigen (PSA), revealing a persistent dependence on the androgen receptor (AR) pathway. Despite standard-of-care treatments targeting the AR axis, anti-androgen resistance inevitably arises through numerous mechanisms including AR gene amplification, mutations in the ligand-binding domain (LBD), and the expression of hormone constitutively active splice variants of AR (a.g., AR-V7).

New methods of inhibiting the androgen pathway are needed to overcome these AR-based mechanisms of resistance against full-length, mutated, and splice variant AR. One approach is through selective inhibition of the N-terminal domain (NTD) of the AR, which inhibits its transcriptional activity even in the presence of LBD-driven anti-androgen resistance. EPI-7386 represents a new generation of NTD inhibitors (Antara). It is designed to inhibit transcriptional activity of the AR by interacting with the NTD, thereby being active against both full-length and splice variant AR.

A Phase 1 clinical trial of EPI-7386 is underway and its preclinical efficacy, selectivity, and safety profile are presented.

BACKGROUND

1. Andromes are first-in-class NTD inhibitors of the androgen receptor (AR) and mechanism of action. The AR comprises three main functional domains: the LBD, involved in binding with androgens, the NTD, and the LBD, which contains the transcriptional activity domain. Inhibition of the NTD can therefore inhibit androgen-driven transcription via AR.

2. EPI-7386 interacts with AR independently of its activation state.

RESULTS

3. EPI-7386 inhibits AR-mediated transcriptional activity of both AR-FL and AR-V7 and AR-dependent cell proliferation.

4. EPI-7386 interacts with the AR independently of its activation state.

5. EPI-7386 inhibits AR-associated transcriptional activity similar to enzalutamide but with some differences while the combination with enzalutamide exhibits a broader and deeper inhibitory effect.

6. EPI-7386 is active in a variety of castrate-sensitive and -resistant prostate cancer xenograft models.

7. EPI-7386 was well tolerated in rat and dog tox studies and is predicted to achieve clinically relevant exposures in humans.

SUMMARY

Clinical candidate EPI-7386 displays preclinically:

- Full-length AR target engagement measured in cells.

- Similar potency to the ‘latencies’ in full-length AR driven models in vitro.

- On-target activity against the transcriptional activity of the AR, overall similar to enzalutamide but with a few notable qualitative and quantitative differences.

- Combination treatment with enzalutamide displays broader and deeper inhibition of AR-associated transcriptional activity than higher dose of each single agent.

- Superior activity to enzalutamide in AR-V7-driven cellular models by inhibiting both AR-FL and AR-V7-regulated genes.

- Activity in several in vitro and in vivo CRPC cell lines including enzalutamide resistant models.

- Dose response activity with a minimal active exposure > 800 ng/mL in mouse VCaP xenograft models.

- Toleration in 28-days tox studies in rats and dogs at AUC 2,000,000 ng*hr/mL with activity seen on androgen-sensitive and -resistant viable target organs.

- Favorable human PK parameters supporting QD dosing.

EPI-7386 IND was cleared by the FDA and the Phase 1 study starts in Q2 2020 with initial starting dose of 20mg.

FIRST IN HUMAN CLINICAL STUDY

- **Patient population**: mCRPC patients progressing on standard of care (including the latest antitrogens)

- **Study design**: 3+3 design

- **Study endpoints**: Recombined Phase 2 dose (RP2D) Safety and PK

- **Correlative studies**

 - CTCAE AR-V7

 - Immunohistochemistry

 - TMA

 - Study starts Q2 2020

Page dimensions: 6192.0x3096.0

Declaration of Competing Interest

Declarations of relevant interests (if any) are submitted with each manuscript (see the Instructions for Authors).**