EPI-7386

EPI-7386 interacts with the AR independently of its activation state

EPI-7386 inhibits AR-associated transcriptional activity similar to lutamides but with some differences, while the combinations with LBD inhibitors exhibit a broader and deeper inhibition

EPI-7386 is active in a variety of castrate-sensitive and -resistant prostate cancer xenograft models

EPI-7386 was well tolerated in rat and dog toxic studies and is predicted to achieve clinically relevant exposures in humans

The majority of metastatic castration-resistant prostate cancers (mCRPC) progress on anti-androgen therapy with many prostate-specific antigen (PSA), revealing a persistent dependence on the androgen receptor (AR) pathway. Despite standard-of-care treatments targeting the AR axis, anti-androgen resistance inevitably arises through numerous mechanisms including AR gene amplification, mutations in the ligand-binding domain (LBD), and the expression of truncated constitutively active splice variants of AR that lack the LBD (e.g., AR-V7).

New methods of inhibiting the androgen pathway are needed to overcome these AR-based mechanisms of resistance against full-length, mutated, and splice variant AR. One approach is through selective inhibition of the N-terminal domain (NTD) of the AR, which can inhibit its transcriptional activity even in the presence of LBD-driven anti-androgen resistance.

EPI-7386 represents a new generation of NTD inhibitors (Androz). EPI-7386 has demonstrated potent activity in vitro expressing full-length AR, with an IC50 ~ 400 nM on the inhibition of AR-driven genes. Importantly, EPI-7386 is capable of inhibiting both the full-length AR and AR splice variants which are resistant to currently approved antiandrogens such as lutamides (enzalutamide, apalutamide, darolutamide). These observations translated into anti-proliferative activity in both full-length and AR-V7-driven cell lines.

A Phase 1 clinical trial of EPI-7386 in mCRPC patients failing enzalutamide (Enza) showed promising efficacy, safety, and tolerability with a starting dose of 200 mg QD. Repeat dose showed no accumulation between D1 and D23.

Results

Figure 1. Anitens are first-in-class NTD inhibitors of the androgen receptor.

**Figure 2. Cellular Transwell assay (CTWA) of AR target-engaged by EPI-7386: (A) NTD target-engaged and EPI-7386 blocks AR-driven transcriptional activity (Transfection Reagents: BeadMax Transfection Reagents, Invitrogen). (B) EPI-7386 blocking AR-driven activity in luciferase reporter assays in C4-2B, CHO, 293T, and HeLa cell lines. (C) EPI-7386 blocks AR-driven activity in SH-SY5Y and A549 cells treated with EPI-7386 (Enzyme MTC test) with cells treated with vehicle showing complete rescue of luciferase activity as a result of compound engagement to its target.”

Figure 3. Transcriptional analysis of gene expression in LNCaP cells.

Figure 4. Transcriptional analysis of gene expression in CaP4T2s.

Figure 5. In vivo activity in CTCP xenograft models.

Figure 6. Preclinical profile of EPI-7386, a second-generation N-terminal domain androgen receptor inhibitor for the treatment of prostate cancer.

Preclinical study of EPI-7386, a second-generation N-terminal domain androgen receptor inhibitor for the treatment of prostate cancer

Ronan Le Moigne1, Nan Hyung Hong2, Paul Pearson3, Veronique Lauriault4, C. Adriaan Banauls5, Nasrin R. Mawji2, Teresa R. Wilkins6, Peter Virski6, Raymond J. Andersen7, Marianne D. Sadar1, Han-Jie Zhou1, Alessandra Cesana8

ESSA Pharmaceuticals, Houston, TX, and South San Francisco, CA, USA. Department of Genome Sciences, BC Cancer Agency, 675 West 10th Avenue, Vancouver, BC V5Z 1L3, Canada. Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada.

Abstract 3556

Preclinical profile of EPI-7386, a second-generation N-terminal domain androgen receptor inhibitor for the treatment of prostate cancer

Background

The majority of metastatic castration-resistant prostate cancers (mCRPC) progress on anti-androgen therapy with rising prostate-specific antigen (PSA), revealing a persistent dependence on the androgen receptor (AR) pathway. Despite standard-of-care treatments targeting the AR axis, anti-androgen resistance inevitably arises through numerous mechanisms including AR gene amplification, mutations in the ligand-binding domain (LBD), and the expression of truncated constitutively active splice variants of AR that lack the LBD (e.g., AR-V7). New methods of inhibiting the androgen pathway are needed to overcome these AR-based mechanisms of resistance against full-length, mutated, and splice variant AR. One approach is through selective inhibition of the N-terminal domain (NTD) of the AR, which can inhibit its transcriptional activity even in the presence of LBD-driven anti-androgen resistance.

EPI-7386 represents a new generation of NTD inhibitors (Androz). EPI-7386 has demonstrated potent activity in vitro expressing full-length AR, with an IC50 ~ 400 nM on the inhibition of AR-driven genes. Importantly, EPI-7386 is capable of inhibiting both the full-length AR and AR splice variants which are resistant to currently approved antiandrogens such as lutamides (enzalutamide, apalutamide, darolutamide). These observations translated into anti-proliferative activity in both full-length and AR-V7-driven cell lines.

A Phase 1 clinical trial of EPI-7386 in mCRPC patients failing enzalutamide (Enza) showed promising efficacy, safety, and tolerability with a starting dose of 200 mg QD. Repeat dose showed no accumulation between D1 and D23.

Results

Figure 1. Anitens are first-in-class NTD inhibitors of the androgen receptor.

**Figure 2. Cellular Transwell assay (CTWA) of AR target-engaged by EPI-7386: (A) NTD target-engaged and EPI-7386 blocks AR-driven transcriptional activity (Transfection Reagents: BeadMax Transfection Reagents, Invitrogen). (B) EPI-7386 blocking AR-driven activity in luciferase reporter assays in C4-2B, CHO, 293T, and HeLa cell lines. (C) EPI-7386 blocks AR-driven activity in SH-SY5Y and A549 cells treated with EPI-7386 (Enzyme MTC test) with cells treated with vehicle showing complete rescue of luciferase activity as a result of compound engagement to its target.”

Figure 3. Transcriptional analysis of gene expression in LNCaP cells.

Figure 4. Transcriptional analysis of gene expression in CaP4T2s.

Figure 5. In vivo activity in CTCP xenograft models.

Figure 6. Preclinical profile of EPI-7386, a second-generation N-terminal domain androgen receptor inhibitor for the treatment of prostate cancer

Summary

Clinical compound EPI-7386 displays preclinically:

- Engagement with AR
- On-target activity against the transcriptional activity of the AR, overall similar to lutamides but with a few notable qualitative and quantitative differences
- Superior activity to enzalutamide in AR-V7-driven cellular models by inhibiting both AR-FR and AR-V7 regulated genes
- Complementarily with the second generation of lutamides in inhibiting the AR-associated transcriptional activity, with broader and deeper inhibition of the AR pathway demonstrated in suboptimal doses
- Activity in several in vivo and in vitro CTCP cell lines including enzalutamide-resistant cell lines
- Dose response activity with a minimal active exposure ~ 80,000 ng/ml”h, and target active exposure ~ 300,000 ng/ml”h, in mouse VCaP xenograft models
- Tolerability in 28-days toxic studies in rats and dogs at AUC ~ 200,000 ng/ml”h, with activity seen on androgen-sensitive target organs.
- Favorable human PK parameters supporting QD dosing.

The Phase 1 dose escalation clinical trial of EPI-7386 is ongoing in men with mCRPC progressing on standard of care (including the latest antiandrogens).

Study design

- 3+3 design
- n ~ 18 patients for dose escalation
- n ~ 10 patients for dose expansion

Study endpoints

- Recommended Phase 2 dose (RP2D) Safety and PK
- PSA response

Correlative studies

- CTC: comparison
- AR-V7: response

Timeline

- First in man dosing began Q3 2020